Parametrized Surface

A parametrized surface in \mathbb{R}^{3} can be described locally by the vector-valued C^{1} function

$$
X(u, v)=[\alpha(u, v), \beta(u, v), \gamma(u, v)] .
$$

A possible definition of the normal N at point $\left[x_{0}, y_{0}, z_{0}\right]$ corresponding to parameter values $\left(u_{0}, v_{0}\right)$ is

$$
N=N\left(u_{0}, v_{0}\right)=\left.\left[\frac{\partial(\beta, \gamma)}{\partial(u, v)},-\frac{\partial(\alpha, \gamma)}{\partial(u, v)}, \frac{\partial(\alpha, \beta)}{\partial(u, v)}\right]\right|_{\left(u_{0}, v_{0}\right)} .
$$

Let's verify that this agrees with another of our definitions, by computing and using the implicit function theorem. Suppose

$$
\frac{\partial(\alpha, \beta)}{\partial(u, v)} \neq 0, \text { at } u_{0}, v_{0}
$$

Consider the equations

$$
F(x, y, u, v)=x-\alpha(u, v)=0, G(x, y, u \cdot v)=y-\beta(u, v)=0 .
$$

By the preceding line we can solve for u, v near $\left(x_{0}, y_{0}, u_{0}, v_{0}\right)$ as C^{1} functions $u=u(x, y), v=v(x, y)$. Using the chain rule we find

$$
u_{x}=\frac{\beta_{v}}{\frac{\partial(\alpha, \beta)}{\partial(u, v)}}, v_{x}=-\frac{\beta_{u}}{\frac{\partial(\alpha, \beta)}{\partial(u, v)}} .
$$

Also using the implicit function theorem, we see that locally the points on the parametrized surface can be written as the graph of a C^{1} function

$$
z=f(x, y), \text { where } f(x, y)=\gamma(u(x, y), v(x, y))
$$

In this form a normal to the surface can be written as

$$
n=\left[-f_{x},-f_{y}, 1\right] .
$$

Let's see if this is a non-zero multiple of N. To see this we use the chain rule again to first of all compute

$$
f_{x}=\gamma_{u} u_{x}+\gamma_{v} v_{x}
$$

and then use previous formulas for u_{x} and v_{x} to get

$$
-f_{x}=\frac{\frac{\partial(\beta, \gamma)}{\partial u(u, v)}}{\frac{\partial(\alpha, \beta)}{\partial(u, v)}},-f_{y}=-\frac{\frac{\partial(\alpha, \gamma)}{\partial u(v)}}{\frac{\partial(\alpha, \beta)}{\partial(u, v)}} .
$$

You have to very careful to get the signs right. If you subsitute this into the formula for n and clear denominators, you get the formula for N. Always use the chain rule.

